GistTree.Com
Entertainment at it's peak. The news is by your side.

Structural and electronic properties of chiral single-wall copper nanotubes

0

Abstract

The structural, energetic and electronic properties of chiral (n, m) (3⩽n⩽6, n/2⩽mn) single-wall copper nanotubes (CuNTs) were investigated by the usage of projector-augmented wave skill basically basically based completely on density-purposeful theory. The (4, 3) CuNT is energetically stable and desires to be seen experimentally in each and every free-standing and tip-suspended stipulations, whereas the (5, 5) and (6, 4) CuNTs wants to be seen in free-standing and tip-suspended stipulations, respectively. The different of conductance channels within the CuNTs would not continuously correspond to the different of atomic strands comprising the nanotube. Value density contours account for that there might be an enhanced interatomic interplay in CuNTs compared with Cu bulk. Present transporting states note varied lessons and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

That is a preview of subscription jabber material, log in to check rep entry to.

Receive entry to alternate suggestions

Grasp single article

Instant rep entry to to the plump article PDF.

US$ 39.95

Tax calculation shall be finalised for the length of checkout.

References

  1. 1

    Murphy C J, Sau T Okay, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109: 13857–13870

    Article 

    Google Scholar
     

  2. 2

    Oshima Y, Onga A. Helical gold nanotube synthesized at 150 Okay. Phys Rev Lett, 2003, 91: 205503

    ADS 
    Article 

    Google Scholar
     

  3. 3

    Kharche N, Manjari S R, Zhou Y, et al. A comparative glance of quantum transport properties of silver and copper nanowires the usage of first rules calculations. J Phys-Condens Topic, 2011, 23: 085501

    ADS 
    Article 

    Google Scholar
     

  4. 4

    Kumar A, Kumar A, Ahluwalia P Okay. Ab initio glance of structural, electronic and dielectric properties of free standing ultrathin nanowires of devoted metals. Physica E, 2012, 46: 259–269

    ADS 
    Article 

    Google Scholar
     

  5. 5

    Bowler D R. Atomic-scale nanowires: Bodily and electronic structure. J Phys-Condens Topic, 2004, 16: R721–R754

    ADS 
    Article 

    Google Scholar
     

  6. 6

    Wang B, Shi D, Jia J, et al. Elastic and plastic deformations of nickel nanowires under uniaxial compression. Physica E, 2005, 30: 45–50

    ADS 
    Article 

    Google Scholar
     

  7. 7

    Kondo Y, Takayanagi Okay. Synthesis and characterization of helical multi-shell gold nanowires. Science, 2000, 289: 606–608

    ADS 
    Article 

    Google Scholar
     

  8. 8

    Oshima Y, Knodo Y, Takayanagi Okay. Excessive-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning job. J Electron Microsc, 2003, 52: 49–55

    Article 

    Google Scholar
     

  9. 9

    Tosatti E, Prestipino S, Kostlmeier S, et al. String tension and steadiness of magic tip-suspended nanowires. Science, 2001, 291: 288–290

    ADS 
    Article 

    Google Scholar
     

  10. 10

    Wei G, Nan C, Yu D. Immense-scale self-assembled Ag nanotubes. Tsinghua Sci Technol, 2005, 10: 736–740

    Article 

    Google Scholar
     

  11. 11

    Oshima Y, Koizumi H, Mouri Okay, et al. Proof of a single-wall platinum nanotube. Phys Rev B, 2002, 65: 121401(R)

    ADS 
    Article 

    Google Scholar
     

  12. 12

    Cao H, Wang L, Qiu Y, et al. Generation and boost mechanism of metal (Fe, Co, Ni) nanotube arrays. Chem Phys Chem, 2006, 7: 1500–1504

    Article 

    Google Scholar
     

  13. 13

    Xue S, Cao C, Zhu H. Electrochemically and template-synthesized nickel nanorod arrays and nanotubes. J Mater Sci, 2006, 41: 5598–5601

    ADS 
    Article 

    Google Scholar
     

  14. 14

    Li N, Li X, Yin X, et al. Electroless deposition of commence-raze Cu nanotube arrays. Solid Train Commun, 2004, 132: 841–844

    ADS 
    Article 

    Google Scholar
     

  15. 15

    Kamalakar M V, Raychaudhuri A Okay. A novel skill of synthesis of dense arrays of aligned single crystalline copper nanotubes the usage of electrodeposition within the presence of a rotating electric arena. Adv Mater, 2008, 20: 149–154

    Article 

    Google Scholar
     

  16. 16

    Meng F, Jin S. The answer boost of copper nanowires and nanotubes is pushed by screw dislocations. Nano Lett, 2012, 12: 234–239

    ADS 
    Article 
    MathSciNet 

    Google Scholar
     

  17. 17

    Chowdhury T, Casey D P, Rohan J F. Additive impact on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochem Commun, 2009, 11: 1203–1206

    Article 

    Google Scholar
     

  18. 18

    Senger R T, Dag S, Ciraci S. Chiral single-wall gold nanotubes. Phys Rev Lett, 2004, 93: 196807

    ADS 
    Article 

    Google Scholar
     

  19. 19

    Elizondo S L, Mintmire J W. Ab initio glance of helical silver single-wall nanotubes and nanowires. Phys Rev B, 2006, 73: 045431

    ADS 
    Article 

    Google Scholar
     

  20. 20

    Konar S, Gupta B C. Density purposeful glance of single-wall and double-wall platinum nanotubes. Phys Rev B, 2008, 78: 235414

    ADS 
    Article 

    Google Scholar
     

  21. 21

    Manrique D Z, Cserti J, Lambert C J. Chiral currents in gold nanotubes. Phys Rev B, 2010, 81: 073103

    ADS 
    Article 

    Google Scholar
     

  22. 22

    Cai Y, Zhou M, Zeng M, et al. Adsorbate and defect effects on electronic and transport properties of gold nanotubes. Nanotechnol, 2011, 22: 215702

    ADS 
    Article 

    Google Scholar
     

  23. 23

    Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269

    ADS 
    Article 

    Google Scholar
     

  24. 24

    Kresse G, Furthmüller J. Ab-initio total energy calculations for metals and semiconductors the usage of a airplane-wave foundation residing. Comput Mater Sci, 1996, 6: 15–50

    Article 

    Google Scholar
     

  25. 25

    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations the usage of a airplane-wave foundation residing. Phys Rev B, 1996, 54: 11169–11186

    ADS 
    Article 

    Google Scholar
     

  26. 26

    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave skill. Phys Rev B, 1999, 59: 1758–1775

    ADS 
    Article 

    Google Scholar
     

  27. 27

    Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made straightforward. Phys Rev Lett, 1996, 77: 3865–3868

    ADS 
    Article 

    Google Scholar
     

  28. 28

    Monkhorst H J, Pack J D. Special suggestions for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    ADS 
    Article 
    MathSciNet 

    Google Scholar
     

  29. 29

    Kittel C. Introduction to Solid Train Physics. eighth ed. Fresh York: Wiley, 2005. 20–21


    Google Scholar
     

  30. 30

    Rapidly A, Todorova M, Delley B, et al. Oxygen adsorption and steadiness of surface oxides on Cu(111): A main-rules investigation. Phys Rev B, 2006, 73: 165424

    ADS 
    Article 

    Google Scholar
     

  31. 31

    Landauer R. Spatial variation of currents and fields attributable to localized scatterers in metal conduction. IBM J Res Dev, 1988, 32: 306–316

    Article 
    MathSciNet 

    Google Scholar
     

  32. 32

    Sanvito S. Ab-initio Systems for Trek-Transport at the Nanoscale Stage. 2nd ed. California: American Scientific Publishers, 2005. 28


    Google Scholar
     

  33. 33

    Wang B L, Zhao J J, Chen X S, et al. Constructions and quantum conductances of atomic-sized copper nanowires. Nanotechnol, 2006, 17: 3178–3182

    ADS 
    Article 

    Google Scholar
     

  34. 34

    He C, Qi L, Zhang W X, et al. Manufacture of electric and stress arena on constructions and quantum conduction of Cu nanowires. Appl Phys Lett, 2011, 99: 073105

    ADS 
    Article 

    Google Scholar
     

  35. 35

    Ma L C, Zhang J M, Xu Okay W. Structural and electronic properties of copper nanowire encapsulated into BeO nanotube: First-rules glance. Physica B, 2012, 407: 784–789

    ADS 
    Article 

    Google Scholar
     

  36. 36

    Ma L C, Zhang J M, Xu Okay W. Structural and electronic properties of ultrathin copper nanowires: A density-purposeful theory glance. Physica B, 2013, 410: 105–111

    ADS 
    Article 

    Google Scholar
     

  37. 37

    Miyamoto Y, Rubio A, Louie S G, et al. Self-inductance of chiral conducting nanotubes. Phys Rev B, 1999, 60: 13885

    ADS 
    Article 

    Google Scholar
     

Download references

Author data

Affiliations

  1. College of Physics and Data Skills, Shaanxi Usual University, Xi’an, 710062, China

    YingNi Duan & JianMin Zhang

  2. Department of Medical Engineering and Skills, Xinjiang Medical University, Urumqi, 830011, China

    YingNi Duan

  3. College of Physics and Mechanical and Electronic Engineering, Xi’an University of Arts and Science, Xi’an, 710065, China

    KeWei Xu

Corresponding author

Correspondence to
JianMin Zhang.

About this article

Cite this article

Duan, Y., Zhang, J. & Xu, Okay. Structural and electronic properties of chiral single-wall copper nanotubes.
Sci. China Phys. Mech. Astron. 57, 644–651 (2014). https://doi.org/10.1007/s11433-013-5387-8

Download quotation

Key phrases

  • density-purposeful theory
  • Cu nanotube
  • structural property
  • electronic property

Read More

Leave A Reply

Your email address will not be published.